MAIN FEATURES FOR A NEW RADIOTHERAPY DEVICE BASED ON A SINGLE CONVERGENT BEAM OF PHOTONS (RTHC)

Autores/as

  • Figueroa Saavedra R. Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile Autor/a
  • Elías R. Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile Autor/a
  • Piriz G. Velásquez J. Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile Autor/a
  • Cofré J. Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile Autor/a
  • Fuentes R. Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile. Autor/a
  • Valente M. FaMAF, National University of Cordoba, Córdoba, Argentina. Autor/a

Resumen

A new radiotherapy technique based on a single convergent photons beam (RTHC: Radioterapia de Haz Convergente) by means of a device capable to generate a single beam of convergent X photons has been proposed. Previous studies have shown that a primary beam of these characteristics provides excellent dosimetric results with a dose peak close to the isocenter, similar those used for hadron therapy treatment. To determine the physical and dosimetric characteristics of a device convergent X photons beam and its potential to be used in clinical treatments. Analytical developments plus software that allows determining the necessary fields (electrostatic and/or magnetic fields) for electrons trajectory control are used. Monte Carlo simulation code (PENELOPE) is applied to a specially designed geometry for the generation of a convergent photons beam. We determined the values of the magnetic and/or electric fields to handle the convergent beam device for an electrons’ energy range from 0.1 to 20 MeV. Angular distribution curves of the bremsstrahlung were determined for different thicknesses and incident electrons energies (0.4 to 6.0 MeV), plus the respective doses distribution in each case, characterized by a high dose concentration, close to the isocenter. We can conclude that the physical and dosimetric characteristics of convergent beam device radiotherapy have been determined. The achieved results show that it is possible to develop a convergent beam prototype of low and high energy as a single unit or to be adapted to an existing radiation-therapy LINAC, so this might be used either in the conventional mode or in the conventional one, depending on the case.

Autor de correspondencia: Rodolfo Figueroa S. (rodolfo.figueroa @ ufrontera.cl)

Referencias

[1] The physical basis of IMRT and inverse planning. Webb, S. British Journal of Radiology 76 (2003).

[2] A macropencil beam model: clinical implementation for conformal and intensity modulated radiation therapy. Phillips M. H, Singer K. M. and Hounsell A.R. Phys. Med. Biol. 44 (1991).

[3] Generation of arbitrary intensity profiles by dynamic jaws or multileaf collimators. Spirou S.V, Chui C. S. Med. Phys. 21 (1994).

[4] Beam orientation selection for intensity-modulated radiation therapy based on target equivalent uniform dose maximization. Das S, Cullip T, Tracton G, Chang S, Marks L. and Anscher M. Int J Rad Oncol Biol Phys 55 (2003).

[5] Intensity modulation to improve dose uniformity with tangential breast radiotherapy: initial clinical experience. Kestin L. L, Sharpe M. B, Frazier R. C, Vicini F. A, Yan D. and Matter R. C. Int J Rad Oncol. Biol. Phys. 48 (2000).

[6] Probabilistic objective functions for margin-less IMRT planning. Bohoslavsky R, Witte M. G, Janssen T. M and van Herk M. Phys. Med. Biol. 58 (2013).

[7] Intensity modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Yu C. Phys. Med. Biol. 40 (1995).

[8] Volumetric modulated arc therapy: IMRT in a single gantry arc. Otto K. Med. Phys. 35 (2008).

[9] Bladder dose accumulation based on a biomechanical deformable image registration algorithm in volumetric modulated arc therapy for prostate cancer. Andersen E. S, Muren L. P, Sørensen T. S, Noe K, Ø, Thor M, Petersen J. B, Høyer M, Bentzen L. and Tanderup K. Phys. Med. Biol. 57 (2012).

[10] Review of image-guided radiation therapy. Jaffray D, Kupelian P, Djemil T. and Macklis R. M. Expert Review of Anticancer Therapy 7 (2007).

[11] Innovations in image-guided radiotherapy. Verellen D, de Ridder M, Linthout N, Tournel K, Soete G. and Storme G. Nature Rev Cancer 7 (2007).

[12] Implementation of Remote 3-Dimensional Image Guided Radiation Therapy Quality Assurance for Radiation Therapy Oncology Group Clinical Trials. Cui Y, Galvin J. M, Parker M. and Breen S. Int. Jour. Rad. Onc. Biol. Phys 85, (2013).

[13] Fahimian B, Xing L. and Maxim SU‐E‐J‐178: Image Guidance on the TrueBeam STx: Evaluation of CBCT Imaging Dose and Quality. Phys. Med. Phys. 38, (2011).

[14] Elekta unveils Versa HD. Freeman T. In: medical physics web (2013).

[15] Meltsner S. and DeWerd L. TU‐FF‐A2‐05:3D Dose Distribution of the Elekta Gamma Knife. Med. Phys. 35 (2008).

[16] Nie K, Pouliot J, Hwang A, Sneed P, McDermott M and Ma L. SU‐D‐211‐04: Sector Intensity Modulated (SIM) Gamma Knife Stereotactic Radiosurgery. Med. Phys. 39 (2012).

[17] A review of 3 current radiosurgery systems. David W, Andrews D. W, Bednarz Evans J. J and Downes B. Surgical Neurology 66 (2006).

[18] Bassalow R. and Rodebaugh R. SU‐FF‐T‐227:Evaluation of Six Dosimetric Indices for Cyber Knife Stereotactic Radiosurgery Treatment Planning. Med. Phys. 33 (2006).

[19] Mackie T.R, Holmes T, Swerdloff S, Reckwerdt P, Deasy J.O, Yang Tomotherapy: a new concept for the delivery of conformal radiotherapy using dynamic collimation. J. Med. Phys. 20 1709–19. (1993).

[20] Figueroa R.G. And Valente M., Patent Applied “Dispositivo generador de un haz de electrones y fotones X convergente” 898-2011 (Chile), Argentina, PCT (Pat. Pending).

Descargas

Publicado

2025-02-05

Número

Sección

ARTÍCULOS

Categorías